Łoś–Tarski preservation theorem - definizione. Che cos'è Łoś–Tarski preservation theorem
Diclib.com
Dizionario ChatGPT
Inserisci una parola o una frase in qualsiasi lingua 👆
Lingua:

Traduzione e analisi delle parole tramite l'intelligenza artificiale ChatGPT

In questa pagina puoi ottenere un'analisi dettagliata di una parola o frase, prodotta utilizzando la migliore tecnologia di intelligenza artificiale fino ad oggi:

  • come viene usata la parola
  • frequenza di utilizzo
  • è usato più spesso nel discorso orale o scritto
  • opzioni di traduzione delle parole
  • esempi di utilizzo (varie frasi con traduzione)
  • etimologia

Cosa (chi) è Łoś–Tarski preservation theorem - definizione


Łoś–Tarski preservation theorem         
The Łoś–Tarski theorem is a theorem in model theory, a branch of mathematics, that states that the set of formulas preserved under taking substructures is exactly the set of universal formulas. The theorem was discovered by Jerzy Łoś and Alfred Tarski.
Tarski–Seidenberg theorem         
MATHEMATICAL LOGIC
Tarski-Seidenberg theorem
In mathematics, the Tarski–Seidenberg theorem states that a set in (n + 1)-dimensional space defined by polynomial equations and inequalities can be projected down onto n-dimensional space, and the resulting set is still definable in terms of polynomial identities and inequalities. The theorem—also known as the Tarski–Seidenberg projection property—is named after Alfred Tarski and Abraham Seidenberg.
Banach-Tarski paradox         
IDEA OF TAKING APART AN OBJECT AND CONSTRUCTING TWO IDENTICAL COPIES OF IT
Banach Tarski Paradoxical Decomposition; Banach-Hausdorff-Tarski Paradox; Banach-Hausdorff-Tarski paradox; Hausdorff–Banach–Tarski paradox; Hausdorff-Banach-Tarski paradox; Banach-Tarski; Banach-Tarski paradox; Banach-Tarksi theorem; The Banach-Tarski Paradox; Tarski-Banach paradox; Tarski-Banach Theorem; Banach-Tarski Theorem; Banach-Tarski theorem; Banach–Tarski theorem; Banach–Tarski Theorem; Banach Tarski paradox; Tarski Banach paradox; Tarski Banach theorem; Banach-Tarski Paradox; Banach-Tarksi paradox; Banach Tarski; Banach Tarski Paradox; Hausdorf-Banach-Tarski Paradox; Banach-Tarski sphere dissection; Pea and the Sun; Pea and the Sun paradox; Banach–Tarski; Banach-Tarsky; Banach-Tarsky paradox
<mathematics> It is possible to cut a solid ball into finitely many pieces (actually about half a dozen), and then put the pieces together again to get two solid balls, each the same size as the original. This paradox is a consequence of the Axiom of Choice. (1995-03-29)